01 - Quadratic Programs
[1]:
# This code is from:
# https://qiskit-community.github.io/qiskit-optimization/tutorials/01_quadratic_program.html
[2]:
from qiskit_optimization import QuadraticProgram
from qiskit_optimization.translators import from_docplex_mp
[3]:
# Make a Docplex model
from docplex.mp.model import Model
mdl = Model("docplex model")
x = mdl.binary_var("x")
y = mdl.integer_var(lb=-1, ub=5, name="y")
mdl.minimize(x + 2 * y)
mdl.add_constraint(x - y == 3)
mdl.add_constraint((x + y) * (x - y) <= 1)
print(mdl.export_as_lp_string())
\ This file has been generated by DOcplex
\ ENCODING=ISO-8859-1
\Problem name: docplex model
Minimize
obj: x + 2 y
Subject To
c1: x - y = 3
qc1: [ x^2 - y^2 ] <= 1
Bounds
0 <= x <= 1
-1 <= y <= 5
Binaries
x
Generals
y
End
[4]:
# load from a Docplex model
mod = from_docplex_mp(mdl)
print(type(mod))
print()
print(mod.prettyprint())
<class 'qiskit_optimization.problems.quadratic_program.QuadraticProgram'>
Problem name: docplex model
Minimize
x + 2*y
Subject to
Linear constraints (1)
x - y == 3 'c0'
Quadratic constraints (1)
x^2 - y^2 <= 1 'q0'
Integer variables (1)
-1 <= y <= 5
Binary variables (1)
x
[5]:
# make an empty problem
mod = QuadraticProgram("my problem")
print(mod.prettyprint())
Problem name: my problem
Minimize
0
Subject to
No constraints
No variables
[6]:
# Add variables
mod.binary_var(name="x")
mod.integer_var(name="y", lowerbound=-1, upperbound=5)
mod.continuous_var(name="z", lowerbound=-1, upperbound=5)
print(mod.prettyprint())
Problem name: my problem
Minimize
0
Subject to
No constraints
Integer variables (1)
-1 <= y <= 5
Continuous variables (1)
-1 <= z <= 5
Binary variables (1)
x
[7]:
# Add objective function using dictionaries
mod.minimize(constant=3, linear={"x": 1}, quadratic={("x", "y"): 2, ("z", "z"): -1})
print(mod.prettyprint())
Problem name: my problem
Minimize
2*x*y - z^2 + x + 3
Subject to
No constraints
Integer variables (1)
-1 <= y <= 5
Continuous variables (1)
-1 <= z <= 5
Binary variables (1)
x
[8]:
# Add objective function using lists/arrays
mod.minimize(constant=3, linear=[1, 0, 0], quadratic=[[0, 1, 0], [1, 0, 0], [0, 0, -1]])
print(mod.prettyprint())
Problem name: my problem
Minimize
2*x*y - z^2 + x + 3
Subject to
No constraints
Integer variables (1)
-1 <= y <= 5
Continuous variables (1)
-1 <= z <= 5
Binary variables (1)
x
[9]:
print("constant:\t\t\t", mod.objective.constant)
print("linear dict:\t\t\t", mod.objective.linear.to_dict())
print("linear array:\t\t\t", mod.objective.linear.to_array())
print("linear array as sparse matrix:\n", mod.objective.linear.coefficients, "\n")
print("quadratic dict w/ index:\t", mod.objective.quadratic.to_dict())
print("quadratic dict w/ name:\t\t", mod.objective.quadratic.to_dict(use_name=True))
print(
"symmetric quadratic dict w/ name:\t",
mod.objective.quadratic.to_dict(use_name=True, symmetric=True),
)
print("quadratic matrix:\n", mod.objective.quadratic.to_array(), "\n")
print("symmetric quadratic matrix:\n", mod.objective.quadratic.to_array(symmetric=True), "\n")
print("quadratic matrix as sparse matrix:\n", mod.objective.quadratic.coefficients)
constant: 3
linear dict: {np.int32(0): np.int64(1)}
linear array: [1 0 0]
linear array as sparse matrix:
<Dictionary Of Keys sparse matrix of dtype 'int64'
with 1 stored elements and shape (1, 3)>
Coords Values
(0, 0) 1
quadratic dict w/ index: {(0, 1): np.int64(2), (2, 2): np.int64(-1)}
quadratic dict w/ name: {('x', 'y'): np.int64(2), ('z', 'z'): np.int64(-1)}
symmetric quadratic dict w/ name: {('x', 'y'): np.int64(1), ('y', 'x'): np.int64(1), ('z', 'z'): np.int64(-1)}
quadratic matrix:
[[ 0 2 0]
[ 0 0 0]
[ 0 0 -1]]
symmetric quadratic matrix:
[[ 0 1 0]
[ 1 0 0]
[ 0 0 -1]]
quadratic matrix as sparse matrix:
<Dictionary Of Keys sparse matrix of dtype 'int64'
with 2 stored elements and shape (3, 3)>
Coords Values
(0, 1) 2
(2, 2) -1
[10]:
# Add linear constraints
mod.linear_constraint(linear={"x": 1, "y": 2}, sense="==", rhs=3, name="lin_eq")
mod.linear_constraint(linear={"x": 1, "y": 2}, sense="<=", rhs=3, name="lin_leq")
mod.linear_constraint(linear={"x": 1, "y": 2}, sense=">=", rhs=3, name="lin_geq")
print(mod.prettyprint())
Problem name: my problem
Minimize
2*x*y - z^2 + x + 3
Subject to
Linear constraints (3)
x + 2*y == 3 'lin_eq'
x + 2*y <= 3 'lin_leq'
x + 2*y >= 3 'lin_geq'
Integer variables (1)
-1 <= y <= 5
Continuous variables (1)
-1 <= z <= 5
Binary variables (1)
x
[11]:
# Add quadratic constraints
mod.quadratic_constraint(
linear={"x": 1, "y": 1},
quadratic={("x", "x"): 1, ("y", "z"): -1},
sense="==",
rhs=1,
name="quad_eq",
)
mod.quadratic_constraint(
linear={"x": 1, "y": 1},
quadratic={("x", "x"): 1, ("y", "z"): -1},
sense="<=",
rhs=1,
name="quad_leq",
)
mod.quadratic_constraint(
linear={"x": 1, "y": 1},
quadratic={("x", "x"): 1, ("y", "z"): -1},
sense=">=",
rhs=1,
name="quad_geq",
)
print(mod.prettyprint())
Problem name: my problem
Minimize
2*x*y - z^2 + x + 3
Subject to
Linear constraints (3)
x + 2*y == 3 'lin_eq'
x + 2*y <= 3 'lin_leq'
x + 2*y >= 3 'lin_geq'
Quadratic constraints (3)
x^2 - y*z + x + y == 1 'quad_eq'
x^2 - y*z + x + y <= 1 'quad_leq'
x^2 - y*z + x + y >= 1 'quad_geq'
Integer variables (1)
-1 <= y <= 5
Continuous variables (1)
-1 <= z <= 5
Binary variables (1)
x
[12]:
lin_geq = mod.get_linear_constraint("lin_geq")
print("lin_geq:", lin_geq.linear.to_dict(use_name=True), lin_geq.sense, lin_geq.rhs)
quad_geq = mod.get_quadratic_constraint("quad_geq")
print(
"quad_geq:",
quad_geq.linear.to_dict(use_name=True),
quad_geq.quadratic.to_dict(use_name=True),
quad_geq.sense,
lin_geq.rhs,
)
lin_geq: {'x': np.float64(1.0), 'y': np.float64(2.0)} ConstraintSense.GE 3
quad_geq: {'x': np.float64(1.0), 'y': np.float64(1.0)} {('x', 'x'): np.float64(1.0), ('y', 'z'): np.float64(-1.0)} ConstraintSense.GE 3
[13]:
# Remove constraints
mod.remove_linear_constraint("lin_eq")
mod.remove_quadratic_constraint("quad_leq")
print(mod.prettyprint())
Problem name: my problem
Minimize
2*x*y - z^2 + x + 3
Subject to
Linear constraints (2)
x + 2*y <= 3 'lin_leq'
x + 2*y >= 3 'lin_geq'
Quadratic constraints (2)
x^2 - y*z + x + y == 1 'quad_eq'
x^2 - y*z + x + y >= 1 'quad_geq'
Integer variables (1)
-1 <= y <= 5
Continuous variables (1)
-1 <= z <= 5
Binary variables (1)
x
[14]:
sub = mod.substitute_variables(constants={"x": 0}, variables={"y": ("z", -1)})
print(sub.prettyprint())
Problem name: my problem
Minimize
-z^2 + 3
Subject to
Linear constraints (2)
-2*z <= 3 'lin_leq'
-2*z >= 3 'lin_geq'
Quadratic constraints (2)
z^2 - z == 1 'quad_eq'
z^2 - z >= 1 'quad_geq'
Continuous variables (1)
-1 <= z <= 1
[15]:
sub = mod.substitute_variables(constants={"x": -1})
print(sub.status)
Infeasible substitution for variable: x
QuadraticProgramStatus.INFEASIBLE
[16]:
from qiskit_optimization import QiskitOptimizationError
try:
sub = mod.substitute_variables(constants={"x": -1}, variables={"y": ("x", 1)})
except QiskitOptimizationError as e:
print("Error: {}".format(e))
Error: 'Cannot substitute by variable that gets substituted itself: y <- x 1'
[17]:
mod = QuadraticProgram()
mod.binary_var(name="e")
mod.binary_var(name="f")
mod.continuous_var(name="g")
mod.minimize(linear=[1, 2, 3])
print(mod.export_as_lp_string())
\ This file has been generated by DOcplex
\ ENCODING=ISO-8859-1
\Problem name: CPLEX
Minimize
obj: _e + 2 f + 3 g
Subject To
Bounds
0 <= _e <= 1
0 <= f <= 1
Binaries
_e f
End
[ ]: