03-Finance Tutorial- Pricing European Call Options

[ ]:
#Where to find this example?
#https://qiskit-community.github.io/qiskit-finance/tutorials/03_european_call_option_pricing.html
[1]:
import matplotlib.pyplot as plt

%matplotlib inline
import numpy as np

from qiskit import QuantumCircuit
from qiskit_algorithms import IterativeAmplitudeEstimation, EstimationProblem
from qiskit.circuit.library import LinearAmplitudeFunction
#from qiskit_aer.primitives import Sampler
from qiskit_finance.circuit.library import LogNormalDistribution

import QuantumRingsLib
from QuantumRingsLib import QuantumRingsProvider
from quantumrings.toolkit.qiskit import QrBackendV2

provider = QuantumRingsProvider(token =<YOUR_TOKEN>, name=<YOUR_ACCOUNT>)
backend = QrBackendV2(provider)
from quantumrings.toolkit.qiskit import QrSamplerV1 as Sampler
[2]:
# number of qubits to represent the uncertainty
num_uncertainty_qubits = 3

# parameters for considered random distribution
S = 2.0  # initial spot price
vol = 0.4  # volatility of 40%
r = 0.05  # annual interest rate of 4%
T = 40 / 365  # 40 days to maturity

# resulting parameters for log-normal distribution
mu = (r - 0.5 * vol**2) * T + np.log(S)
sigma = vol * np.sqrt(T)
mean = np.exp(mu + sigma**2 / 2)
variance = (np.exp(sigma**2) - 1) * np.exp(2 * mu + sigma**2)
stddev = np.sqrt(variance)

# lowest and highest value considered for the spot price; in between, an equidistant discretization is considered.
low = np.maximum(0, mean - 3 * stddev)
high = mean + 3 * stddev

# construct A operator for QAE for the payoff function by
# composing the uncertainty model and the objective
uncertainty_model = LogNormalDistribution(
    num_uncertainty_qubits, mu=mu, sigma=sigma**2, bounds=(low, high)
)
[3]:
# plot probability distribution
x = uncertainty_model.values
y = uncertainty_model.probabilities
plt.bar(x, y, width=0.2)
plt.xticks(x, size=15, rotation=90)
plt.yticks(size=15)
plt.grid()
plt.xlabel("Spot Price at Maturity $S_T$ (\$)", size=15)
plt.ylabel("Probability ($\%$)", size=15)
plt.show()
../_images/JupyterNotebooks_QR_for_qiskit_Finance_-_Pricing_European_Call_Options_4_0.png
[4]:
# set the strike price (should be within the low and the high value of the uncertainty)
strike_price = 1.896

# set the approximation scaling for the payoff function
c_approx = 0.25

# setup piecewise linear objective fcuntion
breakpoints = [low, strike_price]
slopes = [0, 1]
offsets = [0, 0]
f_min = 0
f_max = high - strike_price
european_call_objective = LinearAmplitudeFunction(
    num_uncertainty_qubits,
    slopes,
    offsets,
    domain=(low, high),
    image=(f_min, f_max),
    breakpoints=breakpoints,
    rescaling_factor=c_approx,
)

# construct A operator for QAE for the payoff function by
# composing the uncertainty model and the objective
num_qubits = european_call_objective.num_qubits
european_call = QuantumCircuit(num_qubits)
european_call.append(uncertainty_model, range(num_uncertainty_qubits))
european_call.append(european_call_objective, range(num_qubits))

# draw the circuit
european_call.draw()
[4]:
     ┌───────┐┌────┐
q_0: ┤0      ├┤0   ├
     │       ││    │
q_1: ┤1 P(X) ├┤1   ├
     │       ││    │
q_2: ┤2      ├┤2   ├
     └───────┘│    │
q_3: ─────────┤3 F ├
              │    │
q_4: ─────────┤4   ├
              │    │
q_5: ─────────┤5   ├
              │    │
q_6: ─────────┤6   ├
              └────┘
[5]:
# plot exact payoff function (evaluated on the grid of the uncertainty model)
x = uncertainty_model.values
y = np.maximum(0, x - strike_price)
plt.plot(x, y, "ro-")
plt.grid()
plt.title("Payoff Function", size=15)
plt.xlabel("Spot Price", size=15)
plt.ylabel("Payoff", size=15)
plt.xticks(x, size=15, rotation=90)
plt.yticks(size=15)
plt.show()
../_images/JupyterNotebooks_QR_for_qiskit_Finance_-_Pricing_European_Call_Options_6_0.png
[6]:
# evaluate exact expected value (normalized to the [0, 1] interval)
exact_value = np.dot(uncertainty_model.probabilities, y)
exact_delta = sum(uncertainty_model.probabilities[x >= strike_price])
print("exact expected value:\t%.4f" % exact_value)
print("exact delta value:   \t%.4f" % exact_delta)
exact expected value:   0.1623
exact delta value:      0.8098
[7]:
european_call.draw()
[7]:
     ┌───────┐┌────┐
q_0: ┤0      ├┤0   ├
     │       ││    │
q_1: ┤1 P(X) ├┤1   ├
     │       ││    │
q_2: ┤2      ├┤2   ├
     └───────┘│    │
q_3: ─────────┤3 F ├
              │    │
q_4: ─────────┤4   ├
              │    │
q_5: ─────────┤5   ├
              │    │
q_6: ─────────┤6   ├
              └────┘
[9]:
# set target precision and confidence level
epsilon = 0.01
alpha = 0.05

problem = EstimationProblem(
    state_preparation=european_call,
    objective_qubits=[3],
    post_processing=european_call_objective.post_processing,
)
# construct amplitude estimation
ae = IterativeAmplitudeEstimation(
    epsilon_target=epsilon, alpha=alpha, sampler=Sampler(backend=backend, options={"shots": 100, "seed": 75})
)
[10]:
result = ae.estimate(problem)
[11]:
conf_int = np.array(result.confidence_interval_processed)
print("Exact value:        \t%.4f" % exact_value)
print("Estimated value:    \t%.4f" % (result.estimation_processed))
print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int))
Exact value:            0.1623
Estimated value:        0.1693
Confidence interval:    [0.1619, 0.1767]
[ ]: