Simon’s Algorithm
In 1994, Daniel Simon found an oracle-based function with an exponential speedup. The Quantum Fourier Transform and Shor’s algorithm were invented around the same time. Simon’s algorithm uses quantum parallelism and quantum interference and it is a very good teaching example.
Problem Definition
Assume we have an oracle function that maps n-bits to n-bits. i.e.,
A one-to-one function produces a unique output for each input. A two-to-one function produces a unique output for two inputs. This is illustrated in the following examples.
EXAMPLE: ONE-TO-ONE FUNCTION:
000 |
001 |
010 |
011 |
100 |
101 |
110 |
111 |
|
111 |
110 |
101 |
100 |
011 |
010 |
001 |
000 |
Table 1
EXAMPLE: TWO-TO-ONE FUNCTION:
000 |
001 |
010 |
011 |
100 |
101 |
110 |
111 |
|
011 |
010 |
010 |
011 |
000 |
001 |
001 |
000 |
Table 2
Table 1 illustrates a two-to-one function. By examining this table, we can trace four distinct values:
From the table, we can recognize the following property:
We know that
This equation means
See [13] for a detailed explanation of the block diagram and the step-by-step math. The following figure [19] shows the quantum circuit that implements Simon’s algorithm for the hidden string
Note
Be sure to use your API token and your account name.
Step 1. Import the required modules and obtain the backend
import QuantumRingsLib
from QuantumRingsLib import QuantumRegister, AncillaRegister, ClassicalRegister, QuantumCircuit
from QuantumRingsLib import QuantumRingsProvider
from QuantumRingsLib import job_monitor
from QuantumRingsLib import JobStatus
from matplotlib import pyplot as plt
import numpy as np
provider = QuantumRingsProvider(token =<YOUR_TOKEN_HERE>, name=<YOUR_ACCOUNT_NAME_HERE>)
backend = provider.get_backend("scarlet_quantum_rings")
shots = 100
provider.active_account()
Step 2. Define the core methods
def plot_histogram (counts, title=""):
"""
Plots the histogram of the counts
Args:
counts (dict):
The dictionary containing the counts of states
titles (str):
A title for the graph.
Returns:
None
"""
fig, ax = plt.subplots(figsize =(10, 7))
plt.xlabel("States")
plt.ylabel("Counts")
mylist = [key for key, val in counts.items() for _ in range(val)]
unique, inverse = np.unique(mylist, return_inverse=True)
bin_counts = np.bincount(inverse)
plt.bar(unique, bin_counts)
maxFreq = max(counts.values())
plt.ylim(ymax=np.ceil(maxFreq / 10) * 10 if maxFreq % 10 else maxFreq + 10)
# Show plot
plt.title(title)
plt.show()
return
def simons_func (qc, a):
n = qc.num_qubits // 2
# put the first half - REG 1 through H gate
for i in range (n):
qc.h(i)
qc.barrier()
# build the oracle function
for i in range (n):
if ( 0!= (( 1 << i) & a)):
for j in range (n):
qc.cx(q[i], q[j+n])
qc.barrier()
# measure the lower half REG 2
for i in range (n, qc.num_qubits):
qc.measure(i,i)
qc.barrier()
# Apply H transform to REG 1
for i in range (n):
qc.h(i)
qc.barrier()
# Finally measure the first half REG 1
for i in range (n):
qc.measure(i,i)
return
Step 3. Execute the algorithm and plot the results
# obtain the hidden string from the user
hiddenstring = int(input("Enter the hidden string as a binary value: "), 2)
#determine the number of qubits required to represent the hidden string
numberofqubits = hiddenstring.bit_length()
# add a qubit for the ancilla register
numberofqubits *= 2
q = QuantumRegister(numberofqubits , 'q')
c = ClassicalRegister(numberofqubits , 'c')
qc = QuantumCircuit(q, c)
simons_func(qc, hiddenstring )
job = backend.run(qc, shots=shots)
job_monitor(job)
result = job.result()
counts = result.get_counts()
# plot the histogram for REG 1 alone
res_plot = {}
for i in counts.keys():
inp = i[numberofqubits // 2:]
if inp in res_plot:
res_plot[inp] += counts[i]
else:
res_plot[inp] = counts[i]
plot_histogram(res_plot, "")
An example histogram is shown below for the hidden string

We run this function n times and get n strings:
If we are not finding the set of linearly independent string :math: y_i, we can keep calling the function beyond the n attempts, until we can determine a.
If we totally cannot get the required set of linearly independent strings, then it means
If we try this for